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Abstract 

We investigate static space dependent c(z) = (&j),,,, saddle point con- 
figurations in the two dimensional Gross-Neveu model in the large N limit. We 
analyse the saddle point condition for p(z) employing supersymmetric quantum 
mechanics and using simple properties of the diagonal resolvent of one dimen- 
sional S&r&linger operators. We concentrate on the sector of unbroken super- 
symmetry. We solve the saddle point equation in this sector explicitly. The 
resulting solutions are the Callan-Coleman-Gross-Zee kink configurations. We 
thus provide a direct and clean construction of these kinks. Our method of 
finding such non-trivial static configurations may be applied also in other two 
dimensional field theories. 
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I Introduction 

The Gross-Neveu model [I] is a well known two dimensional field theory of N massless 

Dirac fermions $J~ (a = 1,. . . , N) with U(N) invariant self interactions, whose action 

is given by 

S= &, i8$, + g . (1) 

We are interested in the large N limit of (1) in which N t 00 while Ng2 is held fixed. 

Decomposing each Dirac spinor into two Majorana spinors one observes that S is 

invariant under CJ(2N) fl avour symmetry containing the U(N) mentioned above as a 

subgroup [2]. The field theory defined by (1) is a renormalisable field theory exhibiting 

asymptotic freedom, dynamical symmetry breaking and dimensional transmutation. 

Its spectrum was calculated semiclassically (in the large N limit) in [2]. It contains 

the fermions in (1) which become massive, as well as a rich collection of bound states 

thereof. The spectrum of (1) contains also kink configurations [3]. We refer to these as 

the Callan-Coleman-Gross-Zee (CCGZ) k in k s in the sequel. These kinks are expected 

to be part of the spectrum of the Gross-Neveu model since dynamical breaking of the 

discrete chiral symmetry in the Gross-Neveu model suggests that there should be 

extremal field configurations that interpolate between the two minima of the effective 

potential associated with (1) in much the same way that such configurations arise in 

classical field theories whose potential term has two or more equivalent minima. 

The appearance of such solitons in this model implies the existence of an infinite 

number of conservation laws forbidding particle production in scattering processes 

and enables the exact calculation of S-matrix elements in the various sectors of the 

model [4]. 

In this paper we discuss static space dependent a(x) = (&!J)~,, configurations that 

are solutions of the saddle point equation governing the effective action corresponding 

to (1) as N + 00. Such a(x) configurations correspond to non-trivial excitations of 

the vacuum [5, 6] and are therefore important ii determining the entire spectrum of 

the field theory in questionI and its finite temperature behaviour as well[7]. Such 
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configurations are important also in discussing the behaviour of the h expansion of 

(1) at large orders [8, 9, lo]. 

Our discussion makes use of supersymmetric quantum mechanics and simple prop- 

erties of the diagonal resolvent of one dimensional SchrSdinger operators. This sup- 

persymmetry relates the upper and lower components of spinors, implying that the 

square of the Dirac operator may be decomposed into two isospectral Schr6dinger 

operators. It is closely related to the soliton degeneracy discussed in [ll], where the 

soliton is considered as a degenerate doublet having fermion numbers zkf . Concen- 

trating on the sector of unbroken supersymmetry we are able to solve the saddle point 

equation explicitly. These explicit solutions are the CCGZ kink configurations. Our 

explicit solution of the saddle point equation governing the large N behaviour of (1) 

provides a clean direct construction of these kinks. 

In a recent paper [ 121, we have applied a similar method to the anharmonic O(N) 

oscillator and the two dimensional O(N) vector model in the limit N --f 00. In the 

latter case we have found that the effective action sustains approximate extremal 

bilinear condensates of the O(N) vector field that vary very slowly in time. The 

static part of these configurations turned out to be analogous to the CCGZ kinks in 

the Gross-Neveu model. 

The paper is organised as follows: In section II we analyse the saddle point equa- 

tion for static a(z) configurations using supersymmetric quantum mechanics. We 

resolve the saddle point equation into frequencies and demand that the extremum 

condition be satisfied by each Fourier component separately. This strong condition 

turns out to leave us always in the sector of unbroken supersymmetry. This corre- 

sponds physically to U(Z) configurations that interpolate between the two vacua of 

the Gross-Neveu model at the two ends of the world, which are the CCGZ kinks that 

we find as explicit solutions of the saddle point equation in section III. We conclude 

our discussion in section IV. 



II The Saddle Point Equation for Static Solutions 

Following{11 we rewrite (1) as 

s= J I d2x i&T& - ga$$ - 5 CT’] (2) 

where a(x) is an auxiliary field [13]. 

Thus, the partition function associated with (2) is 

2 = VuV$V$ exp 
I 

(ild~~dx[diajl-g~~yl--~02]} (3) 

Gaussian integration over the grassmannian variables is straightforward, leading to 

2 = J Vu exp(i&rr[cr]} w h ere the bare effective action is [14] 

Serr[a] = -f /m dt /m dxu2 - if Trln [-($ - gu)(i8+ gu)] . 
-00 -00 

(4) 

The ground state of the Gross-Neveu model (1) is d escribed by the simplest extremum 

of Serr[ l] in which Q = uo is a constant that is fixed by the (bare) gap equation 

- guo + iNg2 tr 
I 

d2k 1 
- 
(2r)2 p - guo = O - 

(5) 

Therefore, the dynamically generated mass of small fluctuations of the Dirac fields 

around this vacuum is 

m=guo=pel - &4 
(6) 

where /.L is an arbitrary renormalisation scale, and the renormahsed coupling gR (cl) 

is related to the cut-off dependent bare coupling via A e-* = pe ‘-* where 

A is an ultraviolet cutoff. Since m is the physical mass of the fermions it must be 

a renormalisation group invariant, and this fixes the scale dependence of the renor- 

malised coupling gR ,namely, equation (6). F rom now on we will drop the subscript 

R from the renormalised coupling and simply denote it by Ng’. 

As was explained in the introduction, we are interested in more complicated ex- 

trema of S,o, namely static space dependent solutions of the extremum condition on 
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s e8. This condition reads generally 

JSef f 

w, t> 
= -u(x,t) 

-i ftr { [2g2fl(x, t) + igr”&] (2, t( [ 0 + g2P2 - igy’d,fl]-‘lx, t)} = 0 (7) 

where “tr” is a trace over Dirac indices. 

Speck&sing to static Q(X) configurations, and using the Majorana respresentation 

7l = it73 , 7’ = u2 for 7 matrices, (7) becomes 

-s(x) - tr 2gu a, O" 0 du = 

Ng 0 2gu + a, )J ( R+(X,W2) 0 G 0 -CO 
“du 

J [ 2n (2P - &> R+ (x,w2) + (2gfl+ a=> R- (x,w2)] (8) 
--oo 

where 

are the diagonal resolvents of the one dimensional SchGdinger operators 

h* = -8,’ + g2u2 f gu’(x) (10) 

evaluated at spectral parameter w2. 

Note that h* are positive semidefinite isopectral (up to zero-modes) hamiltonians, 

since (10) may be brought into the form [17, 181 

h+ = Q’Q , h- = QQt where 

Q= -f+w, Q' =$+gu. (11) 

These operators may be composed into a supersymmetric hamiltonian H = h+ 0 

( 1 0 h- 
describing one bosonic and one fermionic degrees of freedom [17], which we identify 

with the upper and lower components of the spinors. Supersymmetry implies here 
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that an interchange of the bosonic and fermionic sectors of H leaves dynamics un- 

changed, as can be seen from the fact that Eqs. (8)-(11) are invariant under the 

simultaneous interchanges 

u--r-u, h* + h,, 

R* ---t R,. (12) 

Isospectrality of h+ and h- alluded to above means that to each eigenvector tin 

of h- with a positive eigenvalue E,, there is a corresponding eigenvector +,, of h+ 

with the same eigenvalue and norm, and vice-versa. The precise form of this pairing 

relation is 

tin = &Q$n ; E,>o. (13) 

It is clear that the pairing in (13) fails when En = 0. Thus, in general one cannot 

relate the eigenvectors with zero-eigenvalue (i.e.-the normalisable zero-modes) of one 

hamiltonian in (10) to these of the other. Should such a normalisable zero-mode 

appear in the spectrum of one of the positive semidefinite operators in (lo), it must 

be the ground state of that hamiltonian. In this case the lowest eigenvalue of the 

supersymmetric hamiltonian H is zero, which is the case of unbroken supersymmetry. 

If such a normalisable zero-mode does not appear in the spectrum, all eigenvalues 

of H, and in particular-its ground state energy, are positive, and supersymmetry is 

broken. Since the ground state of a Schrcdinger operator is non-degenerated, h* can 

have each no more than one such a normalisable zero-mode. Moreover, it is clear 

from (10) that in our one dimensional case, only one operator in (10) may have a 

normalisable zero-mode, since it must be annihilated either by Q or by Qt. In cases 

of unbroken supersymmetry, we will take such a normalisable zero-mode to be an 

eigenstate of h- , namely, the real function 

*O(X) = Ne 
-&Wsr 

* (14) 
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which is the normalisable solution of the differential equation 

Q+‘ko = 0 (15) 

where n/ is a normalisation coefficient. 

Note that a necessary condition for the normalisability of Qo is that u(x) have 

the opposite behaviour at foe. Thus, physically, cases of unbroken supersymmetry 

lead to u(z) configurations that interpolate between the two vacua of (4) at the two 

ends of the world, while cases of broken supersymmetry yield u(x) configurations that 

leave and return to the same vacuum state. 

Assigning the zero-mode to h- poses no loss of generality, since the other possible 

case is related to this one via (12). I n what follows we will denote the right hand side 

of (14) by g,-, also in cases of broken supersymmetry where it is non-normalisable. 

This should not cause any confusion, since the ground state will be denoted by lclo, 

which will be equal to \k,-, when supersymmetry is unbroken. 

By definition, the diagonal resolvents in (9) are given by the eigenfunction expan- 

sions 

R-(x) = c ‘FFliz’, 

R+(x) = g $cx,i2 

n>O n - w2 

where the sums extend over all eigenstates, including the continua of scattering states 

where they are understood as integrals. 

Using (13), R+ may be expressed in terms of the &.,‘s as 

R+(x,w2) = 2 
1 IWn (4 I2 

n>O En *: (2) En - w2 
(17) 

where Wn(x) = XPo(x)$h(x) - !&,(x)$J~(x) is the wronskian of \Eo and &. An ele- 

mentary consequence of the SchrGdinger equation is that W:(x) = -En~o(x)$n(x). 

Using this relation, (16) and (17) imply the important relation 

&lu -&)R+ + (2gu+&)R- = 2 (ci’h- ‘,2 1’). (18) 
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Here P is the projector 

p = 1 - 4lclo)($ol (19) 

that projects out the ground state of h- when supersymmetry is unbroken (A = 1), 

and is just the unit operator otherwise (A = 0). We can also use (5) to make a 

frequency resolution of unity as 

i ndu 

J 

1 
-= 
%I2 -A x - (x1-,2 + m2 _ ~2 _ ie I4 * 

Moreover, from (18), (20) and the elementary relation 

1 
(‘I -8: + m2 _ ~2 _ ie 

Ix) = l 
2dm2 -w2 -ie’ 

(20) 

(21) 

the frequency resolution of (8) becomes 

$txip, ‘, 2 1’) = 2gu(x)’ 2&--&-& - (“‘ph- f w&)] ’ 
Substituting (19) into the last equation, all dependence on X cancels out and the 

extremum condition (8) is shaped into its final form as the differential condition on 

R- 
dR- (x, w2) 

dx 
= 2gu(x) 2d-& - R- (+,w’ )I (22) 

which has to be satisfied regardless of whether supersymmetry is broken or not. 

Now, R- (x, w2) , being the diagonal resolvent of h- at spectral parameter w2 is 

subjected to the.so-called “Gelfand-Dikii” equation[l5)[16] 

- 2R-(x,w’)R”( x,w2) + (R’(~,w~))~ + 4R2_(x,w2) [g2u2 - gu’- w2 I = 1. (23) 

Therefore, both equations (22) and (23) must hold and they form a system of 

coupled non-linear differential equations in the unknowns u(x), and R-(x,w’). Sub- 

stituting R’_ and RF from (22) into (23) we obtain a quadratic equation for R- whose 

solutions are 

R, (x,w2) = ;PJ’ f ~w~w~~~~~w; 4w2 cm2 -w’) . (24) 
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To see what the two signs of the square root correspond to we observe that the 

solution with the negative sign in front of the square root has a simple pole as a 

function of w2 at w2 = 0 with a negative residue, while the other solution is regular 

and positive at w 2 = 0. Therefoik, from (16) ‘t 1 is clear that the negative sign root 

corresponds to the case of unbroken supersymmetry, where the simple pole signals the 

existence of a normalisable zero-mode in the spectrum of h-, while the positive root 

solution corresponds, for similar reasons, to cases in which h- lacks such a zero-mode. 

We will see in the next section that the latter solution corresponds also to the case of 

unbroken supersymmetry, where the zero-mode is in the spectrum of h+. Note also 

the branch point singularity in (24) at w2 = m2 which signals the threshold of the 

continuous part of the spectrum of h-. 

Finally, we observe that in principle, a substitution of (24) into (22) yields a second 

order non-linear equation for u(x). However, doing so is not realiy necessary, and all 

desired information could be deduced already from (24) itself as we show in the next 

section. 
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III Static Solutions to the Extremeum Condition 

Considering the explicit form for R-(x, w2) in (24) we have seen at the end of the 

previous section that R-( x,w2) has generally a branch point singularity at w2 = m2 

which is the threshold of the continuum part of the spectrum of h-. Clearly, h- 

can have no continuous spectrum other than that starting at w2 = m2, thus leading 

to the conclusion that R- in (24) can have no other branch points in the w2 plane. 

Therefore, the expression under the square root in (24) must be a perfect square as 

a polynomial in w2, namely, 

* gu’(x) = g2u2(x) - m2. (25) 

From (25) we find straight forwardly the solutions 

gu(x) = f m tanh [m (x - x0)] (26) 

which are exactly the CCGZ kinks and anti-kinks. Here the parameter xc is an inte- 

gration constant that implies translational invariance of (26) since it is the arbitrary 

location of the kinks. Clearly, both cases in (26), and therefore both cases in (24), 

lead to h* operators that do not break supersymmetry, since (14),(26) imply that 

e-s Jd’ 4&b = ’ sech[m(x - x0)] (27) 

is the normalisable zero-mode of h- for the kink configuration, and of h+ when 

u(x) is the anti-kink. Thus, we come to the important conclusion that the only 

possible static extremal u(x) configurations in the sector of unbroken supersymmetry 

are CCGZ kinks and anti-kinks. As it stands, our frequency decomposition of the 

extremum condition (22) seems to lead always to extremal u(z) configurations that 

do not break supersymmetry. We are thus unable to find in this manner the extremal 

u(x) configurations found in [2] in which u(x) has the shape of kink anti-kink pair that 

are very close to each other. Such a configuration evidently breaks supersymmetry 

PI. 
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When u(x) is a kink (24) becomes 

R-(2,~‘) = - 
m2 sech2 [m (3: - x0)] 

2w2JmW 

while for anti-kinks it is just the expression on the right hand side of (21). 

These statements on R- are consistent with the explicit form of the hamiltonians 

h*. Using (10),(26) we find in the kink case 

h+ = -a: + g2u2 + gt# = -a: + m2 and 

h- = -8, + g2u2 - gu’ = --a: + m2 - 2m2 sech2[m(x - 

while in the anti-kink case h* interchange their roles . Thus, in the 

- x0)1 (29) 

latter case, h- 

becomes the Schrijdinger operator of a freely moving particle in a constant potential 

m2 which is the reason why R- is given by the simple expression in (21) in the anti- 

kink case. Indeed, that expression is the x independent solution of the Gelfand-Dikii 

equation (23) corresponding to the constant potential g2u2’-gu’ = m2 that is positive 

at w2 = 0. 

In the kink case, we have obtained the explicit form (28) for R- by substituting 

(26) into (24). A s an independent check, we may deduce this expression for the 

diagonal resolvent for the potential g2u2 - gu’ = m2 - 2m2 sech[m(x - xo)] in other 

ways. The simplest one is to apply an ansatz of the form R- = asech2(px) + 7 to 

the Gelfand-Dikii equation. Another way to derive it is to use the general formula 

R(x) = G(x,y)l,=, = dl$~~$$~Iz=y where the +‘s are the so called Jost functions 

of the problem. In this case they are hypergeometric functions multiplied by sech 

factors. The wronskian in this expression is a ratio of I’ functions dependent on w2 

and m2[6]. 

We can deduce from (24) the CCGZ solution (26) to the extremum condition 

(22),(23) by yet another method which does not rely upon the brach-cut structure of 

R- but rather on its pole structure. Considering the case where the zero-mode is in 

the spectrum of h- we make a Laurent-expansion of the appropriate expression for 
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R- in (24) around the simple pole at w2 = 0. The leading term in this expansion is 

R- - -f g +*( )] w2 . 
Comparing (30) to (14) and (16) we find 

\E@) = A&p (-2g[o(y)dy) = g (31) 

which yields 

Solving (32) we find 

4(z) = Zncosh[m(x - x0)] + c (33) 

where c and zo are integration constants and we have imposed the normalisation 

condition 7 !Pidz = 1 to fix N = fi. Cl early, then, (33) yields the CCGZ kinks 
-00 

upon differentiation. 

We are now in a position to verify briefly that the CCGZ kink configuration leads 

an h- operator that has indeed a single normalisable zero-mode as the explicit form 

(28) for R- suggests. Our discussion follows [18]. In the kink sector (29) implies that 

the eigenstates of h+ are simply these of freely moving particles 4k(z) = eikz, with 

a continuum of strictly positive eigenvalues E+ = k2 + m2 1 m2. These states are 

isospectral to the eigenstates of h-, 

Q d%(x) = { m tanh [m(z - x0)] - ik 

I 
e ikt 

@-TX (34) 

which are therefore the scattering states of h-. The S matrix associated with h- is 

thus 

S(k) = E = exp i 
[( 

(35) 

Since h+ in (29) has only scattering states, h- can have no bound states other than 

its zero-mode (27) which must therefore be its ground state. This single normalisable 
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state of h- corresponds to the single pole of S(k) in (35) at k = im. Note further 

that there are no reflected waves in any of the scattering eigenstates (34) of the 

SchrGdinger operators in (29) . Th is is also the case for the supersymmetry breaking 

a(z) configurations in [2] as well as in other exactly soluble models in two space-time 

dimensions[2]. 

The fact that h* evaluated at the extremal point must be reflectionless can be 

deduced even without solving the extremum condition (22) explicitly, provided one 

makes apriori an assumption that h- has only a single bound state (namely, its ground 

state) regardless of whether supersymmetry is broken or not. 

To this end we consider (22)) in which R- may be replaced by Rp = (z 1 P& 1~) 

as mentioned in the discussion preceding (22). S ince h- is assumed to have a single 

bound state, Rp contains only scattering states of h-, whose corresponding continu- 

ous eigenvalues E = k2 + m2 start at E = m2 . We may therefore write the spectral 

resolution of Rp as 

Rp = 
m2 

= = & 

J 
dx) 

k2 + m2 - w2 (36) 
--oo 

where pk (t) = h1klI?,bk (z) 12. I n erms of Pk the extremum condition (22) becomes t 

d Pk cx> ‘d 1 

z~=zqo (37) 

whose general solution is 

Pk (t) = 1 + ckg; (2) (38) 

where ck is an integration constant. Since by definition Pk (x) cannot blow up at 

infinity, we must set Ck = 0 in the case of broken supersymmetry. Whether su- 

persymmetry is broken or not Pk (x) obviously obtains the asymptotic value of 1 as 

x -+ foe. Therefore, the scattering states +k (x) of h- are given by 

$k (x) = 41 + ckqz (x) eiak(“) (39) 
where ok is a real phase. Substituting these functions into the eigenvalue equation for 

h- and considering its asymptotic behaviour as x --f ztoo we see, using the boundary 
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condition gu (ioo) = fm that the phase becomes that of a free particle, which is 

obvious, but unimodularity of the phase factor implies further that there be only right 

moving or only left moving wave in +k (x). Therefore, h- must be reflectionless. 

The physical significance of the CCGZ kinks is as follows: As was mentioned in 

the introduction, the dynamical properties of (1) are consequences of the fact that the 

(“large N”) effective potential I&(u) extracted from (4) has two symmetric equivalent 

minima at (Q),,, = &crs # 0. This causes a dynamical breakdown of the discrete 

(22) chiral symmetry of (2) under the transformation 1c, + +ys$, cr + -Q, where 

the fermions fluctuating near the (Q)“~ = fur, ground state acquire dynamical mass 

m = fgbs[l]. I n a similar manner to the appearance of kinks in classical field theories 

with potentials exhibiting spontaneous symmetry breaking, one should expect similar 

configurations to appear in field theories whose eflective potential implies dynamical 

symmetry breaking. The CCGZ kinks (anti-kinks) are precisely such static space- 

dependent a(x) configurations that interpolate between the two minima of &(o), 

and our calculations provide an explicit proof that they are indeed extremal points 

of (4). The various states appearing in the background of the CCGZ kink may be 

deduced by calculating the “partition function” of the Dirac field fluctuations in 

that specific r(x) configuration for a finite time lapse T (i.e.-the trace over the time 

evolution operator eGiHT ) . This has been done explicitly in [2]. The result is 

~~ ,-iHT = 2 (2N)! 

n=O (n)! (2N - n)! exp 
-~~dt /m dx (=~inlr - u~Z )I . 

0 -W 
eXP {iNT (C Wi [akink] - CWi [co]) - inw, [flkink] T} . 

i i 
(40) 

In this equation n is the total number of fermions and anti-fermions that are trapped 

in the single bound state of the kink, wi [cr] = a is the energy of the i - th state 

in the background of a[191 and wb is the energy of the bound state, which is zero for 

the CCGZ kinks. Using this and also the fact that in this background h* in (29) are 

isospectral, we see that all terms in the second exponent in (40) are cancelled, leaving 
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only the first exponent which is the mass of the kink, namely[20], 

1 O” 
Mkink = - 

2 /[ 
602 - U:i,k 1 mN 

-00 
= - 

Ng2 ’ 

Therefore, we see that all states contributing to (40) are degenarate in energy (all 

having the kink mass as energy) which is a direct result of the fact that Wb = 0. Clearly 

there are 22N states in all, that form a huge reducible supermultiplet of 0(2N). Its 

decomposition into irreducible components is clear from the combinatorial prefactors 

in (40) that simply tell us that the various bound states in the kink fall into anti- 

symmetric tensor representations of 0(2N) ( w h ere the integer n is the rank of the 

tensor)[2]. 

The conclusion that in the sector of unbroken supersymmetry the only possible 

extremal static Q(X) configurations are simply either CCGZ kinks or anti-kinks implies 

that many bound states of kinks and anti-kinks could not form. As an example of such 

an unstable assembly we consider a g(x) configuration made of n kinks and n - 1 anti- 

kinks which are interlaced alternately. This configuration has obviously the correct 

asymptotics since it interpolates between the two vacua at the two ends of the world. 

It leads to a manifestly normalisable !Po function with a zero energy eigenvalue, hence 

it respects supersymmetry, but it does not satisfy the extremum condition and thus, 

cannot be stable. Thus, for example, such multi-kink configurations must be excluded 

from the discussion of finite temperature properties of the Gross-Neveu model in [7], 

but this would probably cause no qualitative change in the picture presented there. 

As was discussed above, CCGZ kinks which are the only possible static extrema 

of (4) that do not break supersymmetry lead to an h- operator whose potential 

g2a2 - ga’ is reflectionless and supports only a single bound state, which is therefore 

the ground state of h-. Since supersymmetry is unbroken its binding energy must 

vanish, which implies in turn, that fluctuations of fermions trapped in this potential do 

not react back on the o(x) field [2]. Therefore, obvious conceivable generalisations of 

the CCGZ kinks, namely, configurations- of the form o(x) = m tanh[F] ; n E Z 

which interpolate between the two vacua and lead to a reflectionless h- operators 
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binding n states[6] are not extremal points of (4). B ac k- reaction of fermionic states 

they trap probably destabilise them. 

We close this section by checking explicitly that the CCGZ kink configurations 

obtained above indeed extremise the effective action in (4). Substituting the kink 

configuration in (26) and the explicit expressions (28) and (21) for R- and R+ into 

the extremum condition (8) we find that the pole at w* = 0 disappears from the right 

hand side of (8) in accordance with (18) 1 eaving in the sum over frequencies only 

contributions from the scattering states. Thus, Eq.(8) becomes 

1 iNg* 
% 1 

+ J -A 2aJm*-w2-ic 1 944 = 0, (42) 

implying that the term in the square brackets on the left hand side must vanish. But 

vanishing of the latter is precisely the Minkowsky space gap-equation of the Gross- 

Neveu model (5) for the dynamical mass m and it must. therefore hold, confirming 

that the kinks in (26) are indeed solutions of the extremum condition (8). 

15 



IV Conclusion 

In this paper we have solved the extremum condition on the effective action of the two 

dimensional Gross-Neveu model,.for static a(z) configurations in the large N limit. 

Our method of calculation was direct and straightforward, making use of elementary 

properties of one dimensional SchrSdinger operators. Our explicit calculations serve 

as a clean and constructive proof that the CCGZ kink configurations are indeed ex- 

tremal static a(z) configurations of the effective action. Unfortunately, our method 

of calculation is blind to the other extremal static a(z) configurations of the Gross- 

Neveu model reported in [2]. The reason for this drawback must be related to the 

fact that the only physical scale that appeared explicitly in our calculation was the 

dynamically generated mass m which is also the natural scale of the CCGZ kinks. 

In order to see the other static configurations of [2] one must some how incorporate 

their mass scale into the extremum condition, Our method may be applied also to a 

host of other two dimensional field theories, and in particular, to field theories that 

do aot involve reflectionless static configurations, where inverse scattering methods 

are useless. 
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